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als Teil einer Prüfungsleistung angenommen wurde. Alle Ausführungen, die wörtlich
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Abstract

The Component Template Library (CTL) can be used to realize distributed
component based software systems. This document describes and discusses the
CTL protocol, shows how to use it for rapid development of distributed software
projects and compares it to similar systems like CORBA and the CCA.

1 Introduction
Many modern applications are in need of a decent distributed object framework, such
as CORBA or DCOM (Distributed Component Object Model, see [Mic]). Most of the
existing solutions share the problem that they dump a significant amount of work on
the application programmer and that they enforce a strict separation of distributed and
traditional monolithic systems. These problems are addressed by the CTL C++ imple-
mentation (CTL/C++), which tries to make the development of distributed systems as
easy as possible.

This paper describes the design and structure of the CTL protocol itself and the Java
implementation (CTL4j). By describing a distributed Dijkstra algorithm application,
it will show how to use the CTL for your own software projects. Finally, the proto-
col is discussed and compared with other existing solutions, especially in its usability
and performance. The document also serves as an introduction into remote method
invocation (RMI) in general and how the major distributed object frameworks work in
practice.

If you are only interested in using the CTL for your own application, go right to the
section 4.2 of this paper.

Note: For the sake of readability, all CTL4j methods have the list of thrown ex-
ceptions stripped in the source code snippets. Use the CTL4j API documentation for
information about exceptions.

2 Related Work

2.1 Remote Method Invocation
In general, RMI is a mechanism which allows programs to make remote function calls
and access remotely stored objects. The communication happens over a serialized byte
stream, which can, for example, be transported with TCP/IP, between a client (the one
who calls a method) and a server (the one who will execute it). Both sides have to share
their knowledge about available classes, functions and methods, this is done in a remote
interface (RI), sometimes in a special language, like the interface definition language
(IDL) of CORBA. Such a collection of related classes and functions and the way to
interact with them is usually called a component. Ideally, the client-side application
should not need to know if a certain component is available locally or will be invoked
remotely. Of course, this means that there needs to be an authority which can provide
information about available components to distributed applications, an example for
this is the Oject Request Broker (ORB), which handles Interoperable Object Reference
(IOR; basically an URL for an object) of available components (see 4.1.15 for the CTL
protocol’s solution to this problem).

The exchange of structured data types over a serialized stream has to be abstracted
from their binary representation. In the CTL protocol, any complex data structure
is a composition of simpler types, which can either be a fundamental type or one of
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a limited number of composites and to read a data structure from a stream only the
binary representation is needed. The available fundamentals and compositions of the
CTL protocol will be discussed later (see 4.1.4).

In the following, several available distributed object solutions and their usage will
be described, see 6.3 for a comparison of them with the CTL.

2.2 CORBA
The Common Object Request Broker Architecture (CORBA) is a distributed object
specification by the Object Management Group (OMG). It has its own communication
protocol called IIOP and a special languages for defining interfaces, called Interface
Definition Language (IDL). There are implementations available in many program-
ming languages. For this paper, I used ORBit2/libidl2, the open-source CORBA im-
plementation of the GNOME project.

Listing 1: IDL for a simple calculator
interface Perf
{

typedef sequence<double> doublearr;
doublearr send (in doublearr a);

};

2.3 Java RMI
Java RMI is a part of the standard Java SDK by Sun. It uses Java interfaces as def-
inition language of the remote interfaces and is therefore limited to be used by Java
applications only. It has been available since JDK 1.02 and is similar to CORBA in its
complexity.

Listing 2: Java RMI interface declaration
import java.rmi.Remote;
import java.rmi.RemoteException;

public interface Perf extends Remote
{

double[] send (double[] a) throws RemoteException;
}

2.4 Microsoft .NET
Microsoft’s .NET framework offers two ways for distributed components. The first
one uses SOAP as communication protocol and is meant for writing web services with
.NET and should be compatible with SOAP implementations in other programming
languages. The other one is called Remoting and provides a complete infrastructure
for distributed objects. It uses a binary stream for communication. Interfaces for Re-
moting applications are written in C# and can therefore only be used by programming
languages ported to the .NET runtime. The relatively new component architecture
of .NET will replace the formerly used DCOM on the Windows platform. As in the
CTL4j, there is no explicit interface declaration, it is declared implicitly by the imple-
mentation.
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Listing 3: .NET remoting interface declaration
using System;

namespace Bench
{

public interface Perf
{

double[] send (double[] a);
}

}

2.5 SOAP
The Simple Object Access Protocol (SOAP) uses the HTTP protocol to send and re-
ceive XML messages. It is a recommendation ([Grob]) by the W3C and there are
numerous implementations for most modern programming languages. The SOAP ex-
ample code for this paper was developed using C and gsoap2 (see [vE]).

Listing 4: SOAP interface declaration
typedef struct
{

double[100] foo;
} doublearr;

h__send(doublearr, doublearr*);

2.6 Ice
The Internet Communication Engine (Ice) (see [MW05]) is marketed as a modern al-
ternative to CORBA by its author, the company ZeroC Inc (see [Incb]. Like .NET
Remoting, it is a proprietary protocol, but its source code is available under the GPL.
It has support for several languages, namely C++, Java, C#, Visual Basic, Python and
PHP.

2.7 CCA
The Common Component Architecture (CCA) is a fairly new high-performance and
distributed computing framework. It was developed in December 1998 by US national
energy laboratories and research laboratories from the Universities of Utah and Indiana
and was sponsored by the Department of Energy (DOE). Unlike the other approaches,
the CCA is focused on scientific computing and provides pre-built components for it.
Furthermore, it defines a standard for communication and component retrieval, as well
as the Scientific Interface Definition (SIDL) for defining component interfaces, but it
does not enforce a specific implementation. However, the CCA forum ([For]) provides
a reference implementation with SIDL language bindings for C, C++, Fortran, Java and
Python.

2.8 XML-RPC
XML-RPC is a standard for simple remote procedure calls over TCP/IP networks using
HTTP as transport and XML as encoding (see [Inca]). As it does not provide support
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for using distributed components, no naming services and neither location nor access
transparency, it will not be included in the ’Comparison’ section (see 6.3).

3 Resources
The Java implementation of the CTL (CTL4j), which is the base of this paper, was
derived from the original C++ implementation (see [Nie05] by Dr. Rainer Niekamp.
It was developed on Linux using the Sun Java 5.0 SDK and the Java Secure Channel
library (see [JCr]), which is needed for the SSHv2 communication. The build system
uses Apache Ant, which is also a requirement for building the CTL4j itself or appli-
cations which use it. The interface definition language compiler CTLcc consists of
two parts, a Java implementation, which generates C++ interfaces from Java class files
using Reflection and a Python script which generates Java interfaces from C++ compo-
nent interface definitions. The script ctlcc.py uses the module pyparsing (see [McG])
for a lex/yacc-like parser of the CTL grammar. Due to a bug in Java’s Reflection API
for inspecting generics, the Jakarta ByteCode Engineering Library (BCEL) was used
for parsing the bytecode in some situations. This is handled transparently by ClassInfo
objects and cannot be seen when reading the CTL4j or code generator code itself.

4 Results

4.1 The CTL Protocol
4.1.1 Overview

The CTL protocol has two main goals:

• Providing a lightweight and simple protocol which can be used on top of several
communication methods (TCP/IP, MPI and others).

• Making the process of writing an application or a service which uses the CTL
protocol as transparent as possible. The developer of a service can write his
implementation like he would write a normal local class, with the exception that
he needs to give the CTL a method to serialize the contained data (in the Java
implementation this is as simple as implementing the Writable interface). The
developer of a client only needs to know how he can choose a service within
the CTL API and how he starts (and for the CTl4j, stops it; both done by one
single command), he can use the objects provided by CTL services as if they
were standard local objects.

4.1.2 Limitations

Compared to the C++ implementation, CTL4j has a few shortcomings: There is no
support for communication in groups with more than two participants. As of now,
there is no support for exceptions, other than the CTLException which occurs when
a requested class is not available at the other end. In addition to that, there are some
limitations in terms of using non-constant arguments, which will be described later.
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4.1.3 Terminology

• Client
The application which initializes the communication, either through starting the
service via ssh or by making the initial connection.

• ’Magic’ string
To ensure that the communication stream is not corrupted, the hexadecimal num-
ber 1F3E:A28E:2CF0:9378:AA01:0744:5D31:710A is sent during the
handshake.

• Service
The provider of a component implementation which is called by the client.

4.1.4 Fundamentals

Every complex data structure can be broken down to a few fundamental data types and
compositions of them. This section will talk about the available types in CTL4j, their
CTL/C++ equivalent and the handling of user-defined types. As there are no unsigned
types in Java, the unsigned CTL/C++ types will be mentioned with their equally sized
signed counterparts. In the rest of this paper, the CTL4j types will be used.
Integer types
boolean (bool): An one byte integer with values in {0,1}.
char (char, ctl::uchar): An one byte integer, usually interpreted as an ASCII character.
N/A (ctl::int1, ctl::uint1): An one byte integer.
short (ctl::int2, ctl::uint2): A two byte integer.
int (ctl::int4, ctl::uint4): A four byte integer.
long (ctl::int8, ctl::uint8): An eight byte integer.
Floating-point types
float (ctl::real4): A four byte floating-point number.
double (ctl::real8): An eight byte floating-point number.
Other types
void (void): An empty type.

4.1.5 Composites

Arrays
An array is an arbitrary-length list of variables of one type. In Java, the standard no-
tation with a suffix of a left and a right bracket ([]) is used, whereas in C++, it is
a template array<T>. It is serialized as a long, the length of the array, and all the
elements.

Listing 5: Array
array<T> size, T, ...

for (i < size)
istream << array[i]

String
A string is an arbitrary-length list of variables of one type, terminated by a single null
byte. In both Java and C++ the standard string types are used, namely java.lang.String
and std::string. A string is serialized as the elements followed by a single null element.
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Listing 6: String
cstring<T> T, ..., 0

while (T)
istream << cstring[i]

Tuple
A tuple is a fixed-length list of variables of different types. In both languages, it is a
template class, called CTL.Tuple in Java. A tuple is serialized by simply serializing all
types. Basically, a tuple is equivalent to a struct.

Listing 7: Tupel
tuple<T0, ..., Tn>

T0;
...
Tn;

Reference
A reference is used for serializing data structures which can contain multiple point-
ers to one element, for example a linked list or a graph. For saving bandwidth and
avoiding infinite loops (imagine a cyclic graph being send which each element copied
to the stream), each element is sent only once and an ID is sent for all subsequent
occasions. This type exists as a template class in both implementations, being called
CTL.Types.Reference in CTL4j. It is serialized as a boolean, which is set to true for the
first occasion and to false for all others, followed by an long, an unique type ID (long),
the binary size of the element (int) and its serialized content, respectively its unique
type ID. An example for using this type will be given in section 4.3. The Reference
type is also used for reading polymorphic types in the CTL/C++, as its reader only
knows base types.

4.1.6 CTL-specific types

Any The any (ctl::any in C++) type can be used to serialize a type in a manner that
the receiver does not have to know which type will be read. It is implemented as
an Annotation in the CTL4j, which marks that a certain parameter will not be send
directly, but as an any object. It is serialized as a string (an empty string for a null
object), followed by an int, which represents the size of the payload and the serialized
data itself. For compatibility with ctl::any, the type CTL.CCompat.AnyObj exists.
FID A FID (FunctionID) is an unique identifier for a function or method. It consists
of a short, the numerical ID, and a string, the function name. which is empty for a
method. For static methods and constructors, it is a fully-qualified name, consisting of
the method’s namespace (or package in the Java terminology), followed by ::, the name
of the class. a single : and the numerical ID, either with the suffix C for a constructor
or S for a static method.
GroupInfo A GroupInfo is used to hold information about group members and send
them during the handshake. It contains the PeerID of the process and a rPointer to its
Group object.
IPaddr There is only one type for both IPv4 and IPv6 network addresses in the CTL,
the IPaddr. It is an array of 8 shorts, which are all used for the 128bit IPv6 addresses,
respectively the first 6 shorts set to zero and the last two representing the 32bit IPv4
addresses.
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Location A Location (ctl::location) holds all necessary parameters for reaching a com-
ponent. These are the name of an executable1, its path in the filesystem, a hostname,
a port and login, usually username and password. A valid Location is needed to ini-
tialize communication, it can either be set explicitly by the application programmer
or obtained by a resource manager (see 4.1.15). It is serialized as one string which
contains all the information. Optionally, the password can be left out and you will be
prompted at runtime for it. The C++ location strings are only partially supported by
CTL4j as of now.
ObjectID A single long is used as identifier for objects. In Java, this is the result of
the method hashCode(), whereas it is a pointer in C++. See section 5.2.3 for more
information about the internal storage and retrieval of these IDs.
PeerID The Address of a peer, which consists of an int and an IPaddr. It can either be
a physical address, port and IP address, or a logical, GroupID and the zero IPaddr.
rPointer A rPointer is a remote pointer to an object, which contains the PeerID of the
host the object lives on, its ObjectID and an int, the reference counter.
rResult A rResult is used to receive and store results of a call (see 3). It is either
handled internally by the CTL, enabling application programmers to transparently use
remote methods exactly like local methods, or it can be handled by the application itself
using the alternative methods with the rr suffix. The latter can be used to execute
numerous function calls in parallel and obtaining their results from the rResults later
on.

4.1.7 User-defined types

Being a flexible application framework, the CTL of course also supports arbitrary user-
defined types, which are, as explained above (4.1.4, nothing more than a composite of
simpler types, all the way down to the fundamentals (4.1.4). To be able to use a new
data structure, one has to implement the Writable interface:

Listing 8: Writable interface
public interface Writable
{

void read (SerialIn in);
void write (SerialOut out);

}

Those two methods are used by the CTL4j streams (see 5.2.3) to read and write the
types, which means that they have to match each other to work properly. The streams
or composite classes (see 4.1.5 offer read/write functions for all types mentioned above,
which are listed in the accompanying API documentation for CTL4j. A simple user-
defined data-structure, consisting of a double and a float would be implemented like
this:

Listing 9: User-defined data structure
import CTL.*;

public class DoubleDash implements Writable
{

private double d;
private float f;

1CTL4j uses a script which takes care of setting up the classpath and starting the virtual machine
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public void read (SerialIn in)
{

d = in.readDouble();
f = in.readFloat();

}

public void write (SerialOut out)
{

out.writeDouble(d);
out.writeFloat(f);

}
}

Some more sophisticated examples will be shown later on (section 4.2 and 4.3.

4.1.8 Communication

Local class
Shared library Thread Pipes

User code CTL services (Resource manager, ...)

RMI mechanism

Message Passing Interface

TCP/IP MPI
PVM

Figure 1: Shows the layer concept of the CTL protocol

As shown in the diagram, the CTL protocol consists of three communication layers,
the underlying communication protocol, such as TCP/IP, the message passing interface
and the RMI mechanism which lies on top. Above that lies the application layer, which
consists of additional CTL services and all user applications and components.
The first step for establishing a communication is a handshake. The contacted service
first sends an empty package of the type DAT, which has the IP set to the ’magic’-string
and tells the client on which port the service listens. Now the client will connect to this
port and send an OPER package with its own GroupInfo object as payload, the server
will reply with its GroupInfo object and the communication is established.
The protocol consists of two basic operations, a remote call (see Figure 3), which
sends the request for a method and a remote answer (see Figure 4.1.12), which
sends the results of a call, return values, possible modified arguments and/or an excep-
tion, back to the caller.
The connection between client and service is persistent and will only be closed when
the client requests its termination or a fatal error occurs. If the service was started
directly by the client, it will be terminated together with the client.
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Figure 2: Shows the structure of communication via the CTL protocol

4.1.9 Header

All messages passed via the CTL protocol consist of a fixed size header and a variable
sized payload. The header is structured like this:

Table 1: Header details
Payload size (long) 8 byte

Message tag (int) 4 byte
PeerID (see 4.1.6) 20 byte

LogicalID (int) 4 byte

The CTL4j has wrapped assembling, reading and writing in the class
CTL.Types.Header. The message tag is used differently by the various message
types, however, there are some reserved tags (defined in CTL.Remote):

Listing 10: Reserved tags
public final static int EOC = -1;
public final static int DAT = 1;
public final static int OPER = 2;
public final static int RMI = 3;
public final static int CTRL = 4;
public final static int ERR = 5;
public final static int UNDEF = 255;

Tags with a value greater than 255 serve for remote answers (section 4.1.12).
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4.1.10 DAT messages

A DAT message can be used to send data to other processes. This happens syn-
chronized and both communication partners have to know what type is being sent.
CTL.Remote defines two methods for this:

Listing 11: DAT methods
public static Object readDAT (Communicator comm, String type);
public static void writeDAT (Communicator comm, Object data);

4.1.11 Remote call (RMI)

ObjectID

Header

C
lie

nt
Server

Function ID

Arguments

rPointer to an rResult

Message tag

Figure 3: Shows the structure of a RMI call

A remote call serves as request for the remote execution of a function or method.
This mechanism is used transparently by the CTL implementations, so that application
programmers just see a normal method invocation, whereas the language-independent
RMI, which is described in the following, is used.
As any message, the remote call starts with the CTL protocol’s header (see 4.1.9) with
the message tag set to RMI. The following ObjectID is either zero, for constructors
and static methods, or the ID of an already allocated object. Each instance of a remote
object (derived from the base class CTL.RI) just acts as a rPointer with the real object
stored on the remote side, where the ID is sent back by a remote answer (see 4.1.12)
after calling its constructor for the first time. To specify which method should be in-
voked, the FunctionID (see 4.1.6) is used. The arguments are all serialized as described
above and can be deserialized by the communication partner, because both share the
same remote interface declaration (see 4.1.14). The next two data fields are needed to
be able to receive results after the method invocation. The method wrapper generated
by CodeGen (see 5.2.2) allocates a new rResult object (see 4.1.6) and sends a rPointer
of it. The receiving end will know to whom it has to send the results (return value and
modified arguments2), but to be able to retrieve specific result messages from a queue,

2Note: The Java programming language always uses function arguments by value, which means that the
only way to modify an argument is manipulating an object (for example by setFoo() methods). However,
modified arguments can still be read by the caller by using the * rr() functions, which return the rResult
object directly.

10



the caller appends a message tag (int) with a value of greater than 255, which will later
be used as the answer’s tag in its header.
Sending remote calls is handled by the class CTL.Remote like this:

Listing 12: RMI call
public static void call (Communicator comm, Header head, long

objID, FID fid, IStream2 args, rPointer objID2);

This method handles both the remote invocation and configurable debugging/logging
with CTL.Logger (see 5.2.3).

4.1.12 Remote answer

Se
rv

er
C

lient

Return value

Modified arguments

Exceptions

ObjectID

Header

Figure 4: Shows the structure of a RMI answer

Most RMI calls will not be procedures, but functions which will return some kind of
results, either as an exception or the return value of the function, as well as possibly
modified arguments3. Those answers will be send through the answer() method. If all
arguments are constant, the return value is void and no user-defined exceptions exist,
the method will send no answer back.
As any CTL message, the answer starts with a Header, with the message tag set to the
unique tag sent by the call (see 3), followed by the ObjectID of the Object to which the
called method belongs (0 for static methods/functions). The encoding of exceptions is
described in the next section (4.1.13). All arguments which are not marked as const,
will be sent back, because the caller cannot know which were modified by the call and
which were not. Both the return value and the arguments are serialized as described
earlier (see 4.1.4). During development with the CTL4j, programmers will usually not
have to deal with answer(), because it is used inside the generated RI classes and not
in their own code.
Sending remote answers is handled by the class CTL.Remote like this:

Listing 13: RMI answer
public static void answer (Communicator comm, Header head, long

objID, Except ex, IStream2 args);

As call(), this method handles the logging with CTL.Logger automatically.

3See for more information about Java’s handling of this.
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4.1.13 Exceptions

RMI

Group

Header

TCP
Die immediately

Log invalid header and close the connection

Class not found, send an exception back

User−defined or undefined exception

Figure 5: Shows the hierarchy of possible exceptions

There are several ways of reacting to exceptions in the CTL protocol, depending on
their position in the hierarchy, as seen below. Exceptions on TCP or Header level
will not be forwarded in any way, they just lead to the termination of the connection.
Examples are: corrupted headers and socket exceptions.
Exceptions at Group level will lead to a call to a special static method defined in
CTL.Group:

Listing 14: Receive exception at group level.
@builtin @sFID(4) public void recvException (String msg);

The reason for this exception is usually that a class was not found. The message will be
logged by the receiving end and the communication for this call ends. The annotation
builtin is used to mark methods which will not send any answers back, like recvTermi-
nation().
All other possible exceptions occur at RMI level, they are the ones seen in the answer()
diagram above (see 4.1.12). If no exception was thrown by the call, a single null byte is
send back. Other exceptions are usually send as message string, but they are basically
user-defined AnyObjs (see 4.1.6), so any kind of object may be sent back as exception.
As of now, CTL4j has no support for user-defined exceptions.

4.1.14 Remote interfaces

Every CTL component is an implementation of a component interface (RI; also Com-
ponent Interface, CI). It has the same function as the CORBA IDL, being a simple for-
mal description of which classes, functions and methods a component provides, from
which the stubs, or in the CTL case the complete functions which perform data seri-
alization and transport, are generated. The CI grammar can be found in the appendix
(A.1).
Depending on which language you use for developing your CTL application, there are
different methods of generating or writing a CI. A simple component with one method
add() will be used as an example in this section.

• C/C++

Usually, you will write the CI for your component by hand. For the example,
that will look like this:
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Listing 15: CI example 1
#ifndef __ADD_CI__
#define __ADD_CI__

#include <ctl.h>

#define CTL_Class AddCI
#include CTL_ClassBegin

#define CTL_Method1 int4, add (const int4, const
int4), 2

#include CTL_ClassEnd

#endif // __ADD_CI__

As you can see, preprocessor macros are used for defining the RI. The class
AddRI has one method add() with two constant integers as argument and one as
return value. Due to the fact that the C preprocessor (cpp) cannot count lists, the
number of arguments needs to be appended to each declaration. See [Nie05] for
a more detailed description of C++ CIs.

If you already have a working implementation of your component and you just
want to use it in a distributed application using the CTL/C++, you can use the
ri-generator written by Oliver Pajonk, which is written in Java using JavaCC. It
parses existing C/C++ headers and generates a CI for them. You might have a C
implementation of add() which looks like this:

Listing 16: Implementation of add()
#ifndef __ADD_H__
#define __ADD_H__

int add (const int a, const int b);

#endif // __ADD_H__

Because C does not have semantics for defining classes, a library Add will be
generated with that function:

Listing 17: CI example 2
#ifndef __ADD_CI
#define __ADD_CI

#include <ctl.h>

#define CTL_Library Add
#include CTL_LibBegin
#define CTL_Function1 int, add, (const int /*a*/, const int

/*b*/), 2
#include CTL_LibEnd

#endif // __ADD_CI

• Java

13



Due to the lack of a preprocessor in Java, the CTL4j has a code generator which
uses Reflection. This means that the communication code is directly generated
from a Java implementation. Our example looks like this in Java:

Listing 18: CI example 4
import CTL.Annotate.*;
import ReflWrap.*;

public class AddRI
{

public int add (@const_ int arg0, @const_ int arg1)
{

return arg0 + arg1;
}

}

Due to Java’s lack of a const keyword4, the Annotation const is used for marking
constant arguments. For the sake of simplicity, the annotation is also defined for
classes, meaning that all arguments of all methods of that class are constant
(see 3 for a discussion of non-const arguments in Java). Apart from this, the
implementation is just a normal Java class, the rest of the work is done by the
code generator for you5. A look into the generated file reveals that two methods
are generated for each method in the source class:

Listing 19: Excerpt from the generated Java CI
public int add (Integer arg0, Integer arg1);

public rResult add_rr (Integer arg0, Integer arg1);

The add() method can be used like a method of a locally available class, but the
add rr() returns a rResult (see 4.1.6). The returned object can be used if you
want to call several methods at once and catch the results later for example6.

While this method is fine for developing new Java components or use exist-
ing code in distributed applications, nobody wants to write interface stubs for
C++ classes manually. For compatibility with C++, two parsers are available:
ctlcc.py which is written in Python and converts C++ CIs to Java stubs and
CTL.CCompat.CTLcc which generates CIs for existing Java components using
Reflection. Below is an example for code generated by the Python parser, from
which CTLcc can generate the original C++ CI. The sFID annotation is used to
assign a static Function ID to a method for compatibility7.

Listing 20: CI example 4; generated from CI example 1
import CTL.Annotate.*;
import ReflWrap.*;

public class AddRI
{

4Although it is a reserved keyword for the compiler, that is why the underscore is used
5With more than 500 lines of code, the generated RI is too long to be published here
6Example code can be found in the CTL4j distribution.
7By default, FIDs are assigned automatically at runtime
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@sFID(1) public int add (@const_ int arg0, @const_
int arg1)

{
return -1;

}
}

• Python

As described earlier (5.2.4), JPype and Swig allow Python applications to use
existing Java and C++ components, because there is no implementation of the
CTL protocol in that language. By using the C interface (libpython), users may
also write components directly in Python with the help of py2c8. By using the
Parser class, which is distributed with Python and gives developers access to the
internal parser of the interpreter, an existing class can be parsed. A C++ wrapper
for that class is then generated which can be used to generate a CI using the
above mentioned ri-generator.

Listing 21: The Example, implemented in Python
class Add:

def __init__ (self):
pass

def add (self, a, b):
""" @param a int

@param b int
@return int """
return a+b

Because of Python’s dynamic typing, the user has to specify which types are
used by his methods. For this, py2c offers two mechanisms:

– Putting the definition in a doc-string directly in the classes code, like in the
example. A doxygen-inspired syntax is used for that declaration.

– Providing an external XML file with the type information:

Listing 22: py2c XML example
<py2c>

<method name="add">
<param name="a">int</param>
<param name="b">int</param>
<returns>int</returns>

</method>
</py2c>

No matter which method is used, a C++ wrapper and a corresponding header file
is generated for accessing the class from C++.

8As of now, py2c is still experimental.
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4.1.15 Resource manager

For true transparency, distributed applications need a service which provides them with
available implementations of an interface and their locations. The CTL itself only
defines an interface for talking to such managers, but leaves the implementation at
user-level.

Listing 23: CI for the resource manager
#define CTL_Class CTL_Locator
#include CTL_ClassBegin

#define CTL_Constructor1 (const cstring<char> /*
filename*/), 1

#define CTL_Method1 string, operator(), (const string
/*CI_Type*/, const any /*property*/) const , 2

#define CTL_Method2 string, get, (const cstring<char>
/*CI_Type*/, const any /*property*/) const , 2

#include CTL_ClassEnd

Based on a string containing the name of the class or library to look for and a property,
which is an any and can therefore also be defined by the coder of the resource manager,
a ctl::location is determined and returned to the caller. As of now, the CTL4j cannot
use a resource manager.

4.2 Using the CTL4j
This section will walk you through the implementation of an easy distributed calculator,
which can add and subtract two integer numbers, in Java. It covers both the installation
of CTL4j and all implementation details, but basic Java programming experience is
required.

4.2.1 Installation

Obtain a CTL4j tarball and see section 3 for all prerequisites. You can compile it with
make then and run the testsuite with make check or generate the API documentation
with make doc. For the faint of heart, there is a JAR available, which just has to be in
$CLASSPATH.

4.2.2 Implementing the calculator

As you know from section 4.1.14, the implementation class will also act as interface
definition for the remote communication. The simple calculator component will only
be able to add and subtract two integer numbers. Those methods will be static with
constant arguments:

Listing 24: Calculator interface
import CTL.Annotate;

package Impl;

public class Calc
{
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public static int add (@const_ int i, @const_ int j)
{

return i + j;
}

public static int sub (@const_ int i, @const_ int j)
{

return i - j;
}

}

As you can see, it looks like a normal Java class, apart from the const annotations, but,
as described earlier, CodeGen (see 5.2.2) will create a remote interface and implemen-
tation wrapper for it and CTLcc (see 5.2.3) will generate interfaces for using it from
other languages.

4.2.3 Implementing the client

Using the component is not much more difficult, the client/service pair shown here as-
sumes that the component service is not running and has to be started by the client (see
4.1.15 for information about retrieval and storage for information available compo-
nents). The CTL package and the package where the remote interface resides (javaSys
in this case) need to be imported. First, you have to tell the CTL4j where the com-
ponent service should be started, this is done with a Location (see 4.1.6). Then, a
CTL.Process9 is created, which takes two arguments, a Location object and an integer
constant to specify the underlying communication protocol, and passed to the remote
interface class that should be used. After that, you can invoke methods of your RI class
just as you would do when working locally. When the application is done, it has to
terminate the remote process explicitly by using the method stopService(). Apart from
the initialization and termination, using the CTL components also works just like using
local classes.

Listing 25: Calculator client
import CTL.Types.*;
import javaSys.*;

public class Client
{

public static void main (String args[])
{

Location loc = new Location("Server", "/path/to
/example/simple/", "host", "user", "pass");

CTL.Process proc = new CTL.Process(loc, CTL.
Process.TCP);

CalcRI.use(proc);
System.out.println("3 + 4 = "+CalcRI.add(3, 4))

;
System.out.println("5 - 4 = "+CalcRI.sub(5, 4))

;
proc.stopService();

9The package name has to be specified, because the Java framework already defines a Process class. In
subsequent releases, this will called CTL.Link which mimics ctl::link from CTL/C++.
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}
}

4.2.4 Implementing the server

The source code shown here is a basic service for any components in $CLASSPATH,
as the CTL4j will automatically look for classes as needed via the Reflection-API. It
supports both the daemon-mode, in which it always runs and waits for client requests,
and being started by the client via ssh.

Listing 26: Calculator service
import CTL.*;
import CTL.Types.*;

public class Server
{

public static void main (String[] args)
{

try
{

boolean dmn = true;
int port = 0;

if (args.length > 0)
{

port = RUtil.tryInt(args[0]);
dmn = (port != -1);

}

if (!dmn)
Env.grp = new Group(args);

else
Env.grp = new Group("localhost"

, port, 0, 2,
Location.TCP, true);

Env.grp.run();
}
catch (Exception e)
{

RUtil.except(e);
}

}
}

4.2.5 Using the distributed system

CTL4j applications are compiled with Apache Ant. Below, an example build.xml is
provided for compiling the calculator:

Listing 27: Ant build.xml
<project name="example" default="run" basedir=".">
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<description>Simple CTL4j example.</description>

<property name="src" location="src"/>
<property name="build" location="build"/>
<property name="dist" location="dist"/>
<property name="cache" location="depcache"/>

<property name="debug" value="true"/>
<property environment="env"/>
<property name="ctl4j" value="${env.HOME}/projects/wire

/ctl4j/build"/>
<property name="classpath" value="${env.CLASSPATH}${

path.separator}${build}${path.separator}${ctl4j}"/>
<property name="example" value="Client"/>

<target name="run" depends="compile" description="Run
example.">

<java classname="${example}" classpath="${
classpath}" fork="true">

<jvmarg value="-Dfile.encoding=ISO
-8859-1"/>

</java>
</target>

<target name="compile" depends="init" description="
Compile.">

<depend srcdir="${src}" destdir="${build}"
cache="${cache}"

closure="yes"/>
<javac srcdir="${src}" destdir="${build}"

nowarn="true"
debug="${debug}" excludes="Client.java,

Server.java"
classpath="${classpath}"/>

<java classname="CodeGen.Main" classpath="${
classpath}" fork="true">

<arg value="Impl.Calc"/>
</java>
<javac srcdir="${src}" destdir="${build}"

nowarn="true"
debug="${debug}" classpath="${classpath

}"/>
</target>

<target name="init" description="Initialize.">
<tstamp/>
<mkdir dir="${build}"/>
<mkdir dir="${cache}"/>

</target>

<target name="clean" description="Cleanup.">
<delete dir="${build}" quiet="true"/>
<delete dir="${dist}" quiet="true"/>
<delete dir="${cache}" quiet="true"/>
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<delete file="src/javaSys/CalcRI.java"/>
<delete file="src/javaSys/CalcCI.java"/>
<delete file="src/javaSys/CalcLocal.java"/>
<delete file="src/javaSys/CalcDebug.java"/>

</target>
</project>

You can use this for most applications. Just keep in mind that the CTL4j classes have
to be in the CLASSPATH and that all classes which should form components have to
be fed to CodeGen.Main as seen in the compile rule. See [pro] for more information
about writing Ant build-files.

4.3 Example: A distributed Dijkstra algorithm
This section covers a more advanced CTL4j example application, which illustrates the
abstraction of binary types and writing user-defined data structures. Readers should
already be familiar with the concepts discussed in the last section.

4.3.1 Dijkstra’s algorithm

Dijkstra’s algorithm, named after its inventor, Dutch computer scientist Edsger Dijk-
stra, is an algorithm that solves the single-source shortest path problem for a directed
graph with non-negative edge weights ([Wik]).

4.3.2 Serializing a graph

There are several possibilities for shaping a graph data structure, for example associat-
ing each node with an array of incident edges. For this example, a graph was chosen
to consist of a list of nodes and a matrix which hols an entry at position (i, j) if an edge
between i and j exists. For large graphs, this is a quite inefficient data structure in terms
of memory footprint. For a distributed application, this means that it is also a waste of
bandwidth.
All in all, an ultimate solution for the problem of storing graphs does not exist, ap-
plication programmers might choose different implementations depending on the task
at hand. At this point, a CTL-specific way of doing things comes into play: the ab-
straction of types from their binary representation. If all communication partners agree
on the layout of a graph in the stream, they can talk to each other no matter how they
implemented their data structures.
As a graph can have cycles and each node can have multiple edges, deciding on a good
serialization is not straightforward. Fortunately, the Reference (see see reference type
provides a means to send larger data structures which contain lots of internal pointers
(edges in our case). Therefore, the graph can be written as an array of tuples (i, j),
which are pointers to the two nodes of an edge. On the first occurrence of a node in
such a tuple, the entire data and not only a pointer will be written to the stream. A node
itself is also a tuple (String, Integer), storing the name and the weight of the element.

Listing 28: CTL.Types.Node
package CTL.Types;

import CTL.*;
import CTL.Streams.*;
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import ReflWrap.*;

import java.io.*;
import java.lang.reflect.*;

/** Element of CTL graph */
public class Node extends Tupel
{

/** Type parameters of the underlying Tupel */
private static TypeTree[] types;

static
{

types = new TypeTree[2];
try
{

types[0] = new TypeTree(String.class);
types[1] = new TypeTree(Integer.class);

} catch (ClassNotFoundException e) {} // Never
reached.

}

/** This method just sets the statically defined ’types
’ array

* to this objects ’type’ attribute, as defined in
Tupel.

* @param t Dummy argument to satify the TemplHack
interface used

* by Tupel.

*/
public void setTypes (TypeTree[] t)
{

// After 5h of debugging, this line was born,
heh.

this.type = types;
}

/** Generate a new Node

* @param name Name

* @param cost Cost to reach this node

*/
public Node (String name, int cost) throws CTLException

,
ClassNotFoundException

{
super(types);
setItem(0, name);
setItem(1, cost);

}

/** Retrieve the name of this Node

* @return String

*/
public String name ()
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{
try
{

return (String)item(0);
}
catch (CTLException e)
{

return null;
}

}

/** Retrieve the cost of this Node

* @return Cost

*/
public int cost ()
{

try
{

return (Integer)item(1);
}
catch (CTLException e)
{

return -1;
}

}

/** Retrieve a String representation of this object

* @return String

*/
public String toString ()
{

return name();
}

/** Serial read function

* @param in Input stream

*/
public void read (OIStream in) throws IOException,

ClassNotFoundException,
InstantiationException, IllegalAccessException,

InvocationTargetException
{

//System.out.println("moongoo");
try
{

setItem(0, in.readString());
setItem(1, in.readInt());
//System.out.println(item(0)+" "+item

(1));
}
catch (CTLException e)
{

RUtil.except(e);
}
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}
}

The Node class shows how to write a user-defined data-structure which extends a CTL
type. It is very important that the TypeTree is set to the correct values for your type, in
this case, a node is a tuple of a string (the name) and an integer (the cost to reach the
node). Those need to be passed to the superclass, otherwise the tuple’s read method
will not know how to read your type. This procedure is part of the template-hack (see
5.2.3) which handles template parameters in the CTL4j. Depending on the type, the
user needs to provide his own read() and/or write() methods specialized for the type.
As you can see, node only provides write(), because the tuple’s default read() works
fine in this case. The rest of the class is just some code specific to the node and does
not matter in terms of CTL4j.

Listing 29: CTL.Types.Tupel
package CTL.Types;

import CTL.*;
import CTL.Serialize.*;
import CTL.Streams.*;
import ReflWrap.*;

import java.io.*;
import java.lang.reflect.*;

/** CTL Tupel (a fixed-sized array of multiple types) */
// TODO: variable number of type parameters
public class Tupel<A,B> implements Writable, TemplHack
{

/** Type paramenters */
protected TypeTree[] type;
/** Stored data */
protected Object[] data;

/** Array helper function

* @param array Array of classes

* @param idx Index number

* @param moo New value

* @return Array of classes with the specified value
replaced

*/
protected static Class[] insert (Class[] array, int idx

, Class moo)
{

array[idx] = moo;
return array;

}

/** Set the type parameters

* @param types Array of classes

*/
public void setTypes (TypeTree[] types)
{
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//System.out.println("Setting types to: "+
Arrays.toString(types));

type = types;
}

/** Retrieve a string representation of this object

* @return String

*/
public String toString ()
{

StringBuffer buf = new StringBuffer();
buf.append("Tupel (ID #"+hashCode()+"):\n");
for (int i=0;i<type.length;i++)

buf.append("\t"+type[i]+": "+data[i]+
((i!=type.length-1) ? "\n" : ""

));
return buf.toString();

}

/** Dummy constructor to make subclasses happy */
protected Tupel ()
{
}

/** Generate a new Tupel

* @param type Type parameters

*/
public Tupel (Class[] type) throws CTLException,

ClassNotFoundException
{

if (type == null)
throw new CTLException("Invalid Tupel."

);

this.type = new TypeTree[type.length];
this.data = new Object[type.length];
for (int i=0;i<type.length;i++)

this.type[i] = new TypeTree(type[i]);
}

/** Constructor from TypeTree */
public Tupel (TypeTree[] tree) throws CTLException,

ClassNotFoundException
{

if (tree == null)
throw new CTLException("Invalid Tupel."

);

//System.out.println(java.util.Arrays.toString(
tree));

this.type = tree.clone();
this.data = new Object[tree.length];

}
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/** Retrieve the number of elements this Tupel can
store

* @return Number of elements

*/
public int length ()
{

return data.length;
}

/** Retrieve the type of a specific element

* @param i Index number

* @return Type of the element

*/
public Class type (int i) throws CTLException
{

if ((i<0)||(i>=type.length))
throw new CTLException(i+" is out of

bounds.");
return type[i].getType();

}

/** Retrieve the value of a specific element

* @param i Index number

* @return Value of the element

*/
public Object item (int i) throws CTLException
{

if ((i<0)||(i>=data.length))
throw new CTLException(i+ "is out of

bounds.");
return data[i];

}

/** Set the value of a specific element

* @param i Index number

* @param data New value

*/
public void setItem (int i, Object data) throws

CTLException
{

if (data!=null)
{

if ((i<0)||(i>=this.type.length))
throw new CTLException(i+ " is

out of bounds.");

ClassInfo c1 = new ClassInfo(type[i].
getType());

ClassInfo c2 = new ClassInfo(data.
getClass());

if (!c1.equals(c2))
throw new CTLException("Type

mismatch: "+c1.name()+
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" != "+c2.name());
}

//System.out.println(data);
this.data[i] = data;

}

/** Serial read function

* @param in Input stream

*/
public void read (SerialIn in) throws IOException,

ClassNotFoundException,
InstantiationException, IllegalAccessException,

InvocationTargetException
{

for (int i=0;i<type.length;i++)
data[i] = IStream.readType(in, type[i].

getType());
}

/** Serial write function

* @param out Output stream

*/
public void write (SerialOut out) throws IOException,

IllegalAccessException,
InvocationTargetException

{
for (int i=0;i<data.length;i++)

IStream.writeType(out, data[i]);
}

/** Check if two objects are equal

* @param t Object to compare to

* @return True if equal, false otherwise

*/
public boolean equals (Object t)
{

if (!(t instanceof Tupel) || t==null)
return false;

try
{

if (length()!=((Tupel)t).length())
return false;

for (int i=0;i<length();i++)
if ((item(i) == null && ((Tupel

)t).item(i) == null) ||
(!item(i).equals(((

Tupel)t).item(i))))
return false;

return true;
}
catch (CTLException e)
{
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Env.log.msg(Logger.ERR, "Tupel.equals()
: "+e);

return false;
}

}
}

The Tupel class is used here as an example of how a template class can be written when
using CTL4j. Each template class has to implement the TemplHack interface, which
defines this method:

Listing 30: The ReflWrap.TemplHack interface
public interface TemplHack
{

void setTypes (TypeTree[] types);
}

A TypeTree is a tree structure which keeps information about the template parameters
of a class available at runtime by using Class objects as nodes. As the templates de-
fined by Java’s own generics are only available at compile-time, information is passed
to objects by constructor arguments for types which are written and by arguments to
serialRead() for types which are read. The user-defined setTypes() method is invoked
automatically by CTL4j stream reading code to pass that information to the underlying
classes. For application programmer this means that he has to provide that method,
a field in the class to store the information for his type and a way to pass template
arguments to the constructor.

Listing 31: CTL.Types.Graph
package CTL.Types;

import CTL.Serialize.*;
import java.io.*;
import java.lang.reflect.*;

/** Unoptimized trivial graph class; show case for CTL.
Reference

*
* Bandwidth usage: 6n + 18m + 9

* n: number of nodes; m: number of edges

* assumption: each node has at least one edge connected
to it

*
* Sending data and matrix directly: nˆ2 + 2n + 12

*/
public class Graph implements Writable
{

private Node nodes[] = null;
private boolean adjM[][] = null;
private int edges = 0;

public Graph (int size)
{

if (size<=0)
return;
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resize(size);
}

public int size ()
{

if (nodes == null)
return 0;

return nodes.length;
}

public boolean equals (Object moo)
{

if ((moo instanceof Graph) && toString().equals
(moo.toString()))

return true;
return false;

}

private void resize (int size)
{

nodes = new Node[size];
adjM = new boolean[size][size];

for (int i=0;i<size;i++)
for (int j=0;j<size;j++)

adjM[i][j] = (i==j) ? true :
false;

}

public boolean addNode (Node data)
{

if (nodes==null)
{

resize(1);
setNode(0, data);
return true;

}

if (findNode(data)>-1)
return false;

Node old_nodes[] = nodes;
boolean old_adjM[][] = adjM;
edges = 0;
resize(old_nodes.length+1);
for (int i=0;i<old_nodes.length;i++)
{

setNode(i, old_nodes[i]);
for (int j=0;j<old_nodes.length;j++)

if (old_adjM[i][j])
addEdge(i, j);

}
setNode(old_nodes.length, data);
return true;
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}

public int findNode (Node data)
{

if (data!=null && nodes!=null)
{

for (int i=0;i<nodes.length;i++)
if (data.equals(nodes[i]))

return i;
}
return -1;

}

public boolean isEdge (int i, int j)
{

return adjM[i][j];
}

public int cost (int i, int j)
{

return nodes[i].cost() + nodes[j].cost();
}

public boolean addEdge (int i, int j)
{

if (i<0 || j<0 || adjM[i][j] || i==j ||
i>=adjM.length || j>=adjM[i].length)
return false;

adjM[i][j] = true;
edges++;
return true;

}

public boolean addEdge2 (int i, int j)
{

return addEdge(i, j) && addEdge(j, i);
}

public void setNode (int i, Node data)
{

nodes[i] = data;
}

public Node node (int i)
{

return nodes[i];
}

public String toString ()
{

if (nodes==null) return "";
StringBuffer buf = new StringBuffer();
for (int i=0;i<nodes.length;i++)
{
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if (nodes[i]==null) continue;
buf.append(nodes[i]+" ("+nodes[i].cost

()+") --> ");
for (int j=0;j<nodes.length;j++)

if ((i!=j) && adjM[i][j])
buf.append(nodes[j]+"

");
buf.append("\n");

}
return buf.toString();

}

public void write (SerialOut out) throws IOException,
IllegalAccessException,

InvocationTargetException, CTLException
{

out.writeInt(edges);
if (nodes == null)

return;

for (int i=0;i<nodes.length;i++)
for (int j=0;j<nodes.length;j++)

if (i!=j && adjM[i][j])
{

out.serialWrite(new
Reference<Node>(
nodes[i]));

out.serialWrite(new
Reference<Node>(
nodes[j]));

}
}

public void read (SerialIn in) throws IOException,
ClassNotFoundException,

InstantiationException, IllegalAccessException,
InvocationTargetException

{
int len = in.readInt();
//System.out.println(len);

for (int i=0;i<len;i++)
{

Reference<Node> ref = (Reference<Node>)
in.serialRead(

Reference.class, Node.
class);

Reference<Node> ref2 = (Reference<Node
>)in.serialRead(

Reference.class, Node.
class);

Node n1 = (Node)ref.obj();
Node n2 = (Node)ref2.obj();
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//System.out.println(n1+" "+n2);

if (ref.first()) addNode(n1);
if (ref2.first()) addNode(n2);
addEdge(findNode(n1), findNode(n2));

}
}

}

The Graph class shows how to implement a completely new user-defined data-
structure, which is quite simple. Each class which wants to be send over a serialized
stream has to implement the Writable interface, which is similar to the Java-RMI in-
terface Serializable. It consists of two required methods, which were already present
in the other example types, read() and write() which define the reading and writing of
the type, using the corresponding methods for the fundamental types, like writeInt(),
as each complex type can be broken down to an aggregation of fundamental types. To
minimize the sent data, the graph uses Reference objects, which basically are pointers
in a serialized stream. Each object gets a unique ID and only the first occurrence gets
written with all the data, the remaining pointers to the same object write as the unique
ID only (see see CTL.Types.Referenceor a more accurate description of its inner work-
ings). The rest of the class’ code is not CTL4j specific.

4.3.3 The algorithm itself

Listing 32: Dijkstra interface
package Impl;

import CTL.Types.*;

import java.util.*;

// See: http://de.wikipedia.org/wiki/Dijkstras_Algorithmus
public class Dijkstra
{

private Graph g;
private int[] distance;
private int[] ancestor;
private LinkedList<Integer> V;

public Dijkstra (Graph g)
{

this.g = g;
distance = new int[g.size()];
ancestor = new int[g.size()];
V = new LinkedList<Integer>();

}

public Graph getGraph ()
{

return g;
}
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// TODO: Arguments need to be called arg[0-9] atm
public LinkedList<CTL.Types.Node> shortestPath (Node

arg0, Node arg1)
//public LinkedList<Node> shortestPath (Node start,

Node end)
{

Node start = arg0;
Node end = arg1;

for (int i=0;i<g.size();i++)
{

distance[i] = Integer.MAX_VALUE;
ancestor[i] = -1;
V.add(i);

}

int s = g.findNode(start);
int z = g.findNode(end);

if (s==-1)
throw new RuntimeException("Node "+

start+" not found.");
if (z==-1)

throw new RuntimeException("Node "+end+
" not found.");

distance[s] = 0;
ancestor[s] = s;

while (V.size()>0)
{

int u = minDistance();
V.remove(new Integer(u));

if (u==z)
break;

for (int i : V)
if (g.isEdge(u, i) && distance[

u] + g.cost(u, i) < distance
[i])

{
distance[i] = distance[

u] + g.cost(u, i);
ancestor[i] = u;

}
}

LinkedList<Node> ret = new LinkedList<Node>();
int cur = z;
while (cur!=s)
{

ret.addFirst(g.node(cur));
cur = ancestor[cur];
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}
ret.addFirst(start);
return ret;

}

private int minDistance ()
{

int ret = V.peek();
for (int i : V)

if (distance[i]<distance[ret])
ret = i;

return ret;
}

}

The implementation of the algorithm is pretty straightforward and follows the original
pseudo-code. At the moment, the CTL4j’s Reflection parser still has one shortcom-
ing you can see in the shortestPath() method: the arguments of method which uses
templates have to be called argN, N ∈ 0..9. Apart from this, the programmer of the
algorithm code needs no knowledge of CTL4PJ’s API, as you can see.
4.3.4 Implementing the client

Listing 33: DijkstraRI client
import java.util.LinkedList;

import CTL.Types.*;
import javaSys.*;

public class Client
{

private static Node a = null, e = null;

private static Graph graph ()
{

Graph g = new Graph(0);

try
{

a = new Node("A", 1);
e = new Node("E", 1);

g.addNode(a);
g.addNode(new Node("B", 1));
g.addNode(new Node("C", 3));
g.addNode(new Node("D", 1));
g.addNode(e);

g.addEdge(0, 1);
g.addEdge(1, 3);
g.addEdge(3, 4);
g.addEdge(0, 2);
g.addEdge(2, 4);

} catch (Exception ex) {}
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return g;
}

public static void main (String args[])
{

LinkedList<Location> locs = Location.parseFile(
"locs.txt");

if (locs.size() != 1)
System.exit(1);

CTL.Process proc = new CTL.Process(locs.get(0))
;

DijkstraRI.use(proc);
Graph g = graph();
DijkstraRI dj = new DijkstraRI(g);
Graph g2 = dj.getGraph();
System.out.println("Graph check: "+g.equals(g2)

);
System.out.println("Shortest path: "+dj.

shortestPath(a, e));
proc.stopService();

}
}

As always, implementing a client application for an available CTL component is very
easy.
4.3.5 Implementing the server

As said before, the service can always be recycled, because loading and finding the
components is handled by the JVM itself and by the Reflection API. The basic service
is shown verbatim in section 4.2.4.

4.3.6 Using the distributed system

The Ant buildfile shown in section 4.2.5 can also be used again. A sample run of the
Dijkstra client looks like this

Lenin:˜/projects/wire/studienarbeit/examples/dijkstra$ ant
Buildfile: build.xml

init:

compile:

run:
[java] Graph check: true

[java] Shortest path: [A, B, D, E]
[java] Total execution time 10.408843 seconds.
[java] Clean termination.

BUILD SUCCESSFUL
Total time: 11 seconds
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5 Method
This section describes the design and implementation of the CTL4j and requires basic
understanding of the CTL protocol. If you are not familiar with it, you should read
section 4.1 first.

5.1 Initial design
The initial idea of the Java reimplementation of the CTL/C++ was to avoid writing a
parser for the implementation classes (as the C++ implementation did by using tem-
plates) and to directly generate the remote interface definition for them. Another goal
was learning about the new mechanisms Java 5.0 introduced: Generics (Java version of
templates) and Annotations (basically a strict syntax for comments, which can be kept
and processed in the compiled bytecode). Avoidance of the parser was accomplished
by using the Reflection-API, which is a mechanism to gain information about classes,
methods, etc. at runtime and a means to invoke them dynamically.

5.2 Implementation
The Java implementation of the CTL (CTL4j) consists of three major parts:

• ReflWrap: A wrapper around the Reflection-API, which provides an easier in-
terface and some additional convenience features.

• CodeGen: The code generator for remote interfaces (RIs) which utilizes Re-
flWrap to get the necessary information. In contrast to the other distributed ob-
ject frameworks (see 2) CodeGen generates RIs from the implementation classes
themselves and not from some intermediate language like CORBA’s IDL. The
generated classes will be named after the implementation classes with the addi-
tional prefix ’RI’ and will be usable almost completely transparent by applica-
tions.

• CTL: This package consists of the core classes needed for remote communica-
tion via the CTL protocol. Application programmers only have to know a very
small subset of it, the rest will be used by the generated implementation classes
only.

5.2.1 ReflWrap

This package provides an easy-to-use interface to the Reflection-API of Java. It also
handles possibly allocated static FunctionIDs (see 4.1.6) by providing sorted arrays of
methods. It consists of the major classes ClassInfo, ConstructInfo and MethodInfo.
All the ugliness of wrapper classes and weird notation returned by Reflection calls are
hidden by some static methods in the Refl class.
TypeTree
The TypeTree is a data structure used to pass around information about template param-
eters, because Java implements generics using erasure 10. The TypeTree is, obviously,
a tree structure of a template type. An array of arrays of strings would be declared like
this:

10see 5.2.3 for a detailed description.
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TypeTree tree = new TypeTree("CTL.CCompat.CArray<CTL.CCompat.
CArray<java.lang.String>>");

The CArray type is just a C compatible way of declaring arrays in a template-like
syntax, instead of using the usual Java notation.

5.2.2 CodeGen

The code generator generates remote interface definitions and wrapper implementa-
tions from standard Java classes by using the Reflection-API via ReflWrap. It only
generates code if either the implementation or the code generator itself were modified
after its last invocation. If possible, it also calls astyle ([Dav]), a source code pretty
printer, to make the generated code more readable.

5.2.3 CTL

The CTL package implements the communication layer of the protocol, the standard
data structures, the IDL compiler and several helper classes. It consists of several
sub-packages, because of the huge number of classes available (65 at the time of this
writing).
CTL.Annotate
Contains annotations for marking elements for special treatment by the code generator.
CTL.CCompat
Contains classes for compatibility with the C++ CTL.

• CTLcc
This class can generate CTL component interface (CI) from a Java class to be
able to invoke them from C, C++ and FORTRAN code. As the code genera-
tor, it uses the Reflection-API to get information about available classes. The
conversion tool for CTL CIs ctlcc.py uses a grammar (see A.1) to parse the CIs
and generates a Java class with declarations for all available methods and func-
tions. This enables Java code to use components which are written in C, C++ or
FORTRAN.

CTL.Comm
Contains the generic Communicator interface, as well as classes which implement it.
As of now, only a TCP/IP communicator is available.
CTL.Serialize
Contains classes necessary for data serialization.

• SerialIn
This is an extension of the Java SDK class DataInputStream and the CTL re-
placement for the ObjectInputStream. It handles reading serialized data from
any InputStream by providing specialized functions for the basic data structures
(see 4.1.4). On top of the functions for fundamental types, which the DataInput-
Stream already provides, it offers the following methods:

Listing 34: SerialIn methods
public String readString ();
public String readWString ();
public Object[] readArray (String type);
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public Tupel readTupel (String[] types);
public Object readObject ();
public Object serialRead (TypeTree tree);

The first three methods should be straightforward, but the difference between
readObject() and serialRead() is not as obvious. The former is used to read an
Any object, where the latter reads an object of the type specified in the TypeTree
data structure.

The serialRead() method is used to send arbitrary and possibly parametrized
types, which have to implement the Writable interface to be written to the stream
(see 4.1.7). The first argument is the class of the type, the following are the
possible type parameters.

Listing 35: Example of a serialRead() call
// Read a LinkedList<String>
in.serialRead(new TypeTree("java.lang.LinkedList<java.lang.

String>");

For passing the information about type parameters to the underlying read() call,
each parametrized type has to implement the interface ReflWrap.TemplHack.

Listing 36: The ReflWrap.TemplHack interface
public interface TemplHack
{

void setTypes (TypeTree[] types);
}

This interface is needed, because the Java generics are implemented by type
erasure, which means that there is no information available about the type pa-
rameters at runtime11. This choice was made by the Java developers because
of backwards compatibility to the old raw types (see [Gaf04] and [Eck04] for
discussion about this). To have this information available for reading types, a
class implements this interface and the serialRead() method passes it around.
The component developer can expect to receive an array of classes before the
component’s read() method is invoked. This interface might be removed from
later versions of CTL4j if Sun implements a means to retrieve type information
at runtime. See section 4.3 for an example of implementing such a component.

• SerialOut
This is the OutputStream analogue to SerialIn with the following additional
writer functions, on top of DataOutputStream:

Listing 37: SerialOut methods
public void writeString (String data);
public void writeWString (String data);
public <T extends Object> void writeArray (T data);
public void writeObject (Object data);
public void serialWrite (Object data);

11It is erased at compile time, hence the name

37



In contrast to the SerialIn, there is no writeTupel function, because the type infor-
mation is already present in the Tupel and can therefore be sent with the regular
writeObject()/serialWrite() methods without problems.

CTL.Streams
Contains generic communication stream classes.

• IStream
This special stream is handled just like an ObjectOutputStream, however, it saves
information about the data which was written to it. Therefore, it is an easy in-
terface to pass around data from different sources to one ObjectOutputStream
and it is also capable of writing a ’signature’ string to the stream which can be
interpreted by the readFromStream() call. This makes it possible to pass around
larger amounts of arbitrary data via Object*putStreams w/o recreating the struc-
ture of the stream in code on both ends. It is also possible to query the size of
the whole stream. Furthermore, the stream can write the data to other streams
while keeping the data inside, which makes it ideal for debugging stream related
applications.

• IStream2
This stream has mostly replaced IStream, because of its simplicity. It stores the
serialized data in a byte array, which can be written to the stream directly.

CTL.Types
Contains all CTL specific types, as described in section 4.1.6.
CTL
Some classes, which do not fit into the sub-packages, are located in the top-level CTL
package.

• Group
This class is the base for a CTL application. It keeps track of open communi-
cation channels, stores the GroupInfo objects for all group members and does
the initial handshake (see 4.1.8). It can also receive special messages for Group
members:

Listing 38: Special messages
@sFID(3) public void recvTermination (PeerID pid, String

msg);
@sFID(4) public void recvException (String msg);

• Logger
The logger writes internal information about events happening inside the CTL
code to a file. It can filter messages based on six categories: ERR, WARN,
INFO, DBG, DBG1, DBG2.

• ObjectMap
This class handles the mapping from ObjectIDs to objects and stores the objects.
It uses the hashCode() method to generate unique IDs for all objects. Objects can
either be created manually and the registered in the ObjectMap or a constructor
and its arguments are passed to it and the creation happens internally:
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Listing 39: ObjectMap methods
public int createObj (Constructor c, Object[] args);
public int regObj (Object obj);

Each RI has an internal ObjectMap for storing all remotely accessible objects.

5.2.4 Python

In addition to the already available language support (C, C++, FORTRAN) and the
new CTL4j, it is also possible to implement CTL applications, but not components, in
Python. This was done using JPype ([Men]), a Python module which allows access to
native Java classes. However, the performance of this approach is quite bad. With the
help of Swig, Python applications may use C/C++ CTL classes with minor effort.

6 Discussion

6.1 Function Call Overhead/Performance
The measurement was done on a PC-Cluster with 18 Pentium4 (2.4GHz) connected
via GigaBit-Ethernet. The following software was used to compile and run the test
applications:

CTL Intel compiler 8.1
CTL4j Sun JDK 1.5.0 04

.NET remoting Mono 1.1.8.2
CORBA ORBit2 2.12.2
Java RMI Sun JDK 1.5.0 04

SOAP gSOAP 2.7.3

Listing 40: call a function with this signature
array<real8> f(const array<real8>);

6.1.1 Discussion

As you can see in table, the CTL/C++ and CORBA perform best, with the former being
approximately twice as fast as the latter. This has multiple reasons:

• ORBit minimizes memcpy() calls by using readv() and writev(), which makes it
very fast for simple arrays. When using the CTL/C++, the performance will be
similar if the serialization of the data is similar, no matter if a list, array or tuple
is sent.

• ORBit (and CORBA in general) sends data in the hosts byte-order, whereas the
CTL/C++ always sends it in network byte-order at this point in time, which
means that it needs to swap the byte-order on x86 CPUs.

• In terms of latency, which can be measured when sending 0/1 byte arrays, the
CTL/C++ outperforms ORBit by a factor of 6. If the primary use of RMI in your
application is message passing, this might be more important than the ability of
pushing lots of data around.
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Table 2: Benchmark results
0 Kbyte 1 Kbyte 10 Kbyte 100 Kbyte 1 Mbyte 10 Mbyte 100 Mbyte

liba 2.3 * 10−6 2.3 * 10−6 2.3 * 10−6 2.3 * 10−6 2.3 * 10−6 2.3 * 10−6 2.3 * 10−6

thread 1.0 * 10−5 1.0 * 10−5 1.0 * 10−5 1.0 * 10−5 1.0 * 10−5 1.0 * 10−5 1.0 * 10−5

tcp 2.5 * 10−4 3.7 * 10−4 5.2 * 10−4 2.9 * 10−3 2.9 * 10−2 2.8 * 10−1 2.8 * 100

lam 2.0 * 10−3 1.9 * 10−3 2.0 * 10−3 1.0 * 10−2 7.6 * 10−2 6.9 * 10−1 6.3 * 100

pipe 3.8 * 10−4 6.2 * 10−4 2.0 * 10−3 1.0 * 10−2 8.7 * 10−2 8.5 * 10−1 8.5 * 101

mpi 3.0 * 10−4 3.5 * 10−4 7.7 * 10−4 6.4 * 10−3 7.2 * 10−2 7.0 * 10−1 5.8 * 100

pvm 4.0 * 10−4 5.0 * 10−4 2.7 * 10−3 2.9 * 10−2 3.1 * 10−1 2.5 * 100 1.9 * 101

CTL4j 0.3 * 10−1 1.1 * 100 1.5 * 100 Noneb None None None
.NET 4.8 * 10−2 1.4 * 10−2 5.1 * 10−2 4.3 * 10−1 4.3 * 100 Nonec Noned

CORBA 1.7 * 10−3 4.6 * 10−4 8.3 * 10−4 4.0 * 10−3 2.8 * 10−2 2.7 * 10−1 2.7 * 100

Java RMI 1.5 * 10−3 1.3 * 10−3 2.0 * 10−3 6.5 * 10−3 1.2 * 10−1 5.2 * 10−1 3.9 * 100

SOAP 2.1 * 10−2e 2.0 * 10−2 2.1 * 10−2 5.3 * 10−2 4.9 * 10−1 Nonef None

aBenchmarks for the different CTL/C++ transports
bAt the moment, the CTL4j can not send arrays with a size of more than 32k.
cOut of memory error while sending. A comparison test on Win32 shows that it takes roughly the same

time to send as 1MB.
dOut of memory error while sending. A comparison test on Win32 also got an Out of memory error.
eOne byte was sent, because arrays of 0 byte size cannot be used with gSOAP2.
fExample did not compile, because it is not possible to allocate that much space on the stack and using

the heap is not possible in this case.
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Figure 6: perf performance

You may also notice that CTL4j’s performance is one or even multiple orders of mag-
nitude worse than the others. This shows that it is very much work in progress at this
point in time and should not be considered for high-performance tasks. Because of
this, benchmarks for interoperation with CTL/C++ did not take place, but the CTL4j
implements the complete CTL protocol and is able to communicate with components
written in other languages. However, the development of it will continue beyond the
work on this paper and optimizations will happen at some future date.
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6.2 Protocol
When studying the CTL protocol, the reader might wonder why certain design deci-
sions were made. This section explains some of the points which are not immediately
clear if you have not designed your own RMI protocol or wrote an implementation of
an existing one by yourself. The material in this section is presented as a QA dialog.

• Why do the GroupInfo objects need to be transferred?
They are used to identify group members at RMI level independent from the
transport protocol.

• Why are IP addresses 128bit and ports 32bit?
The CTL’s IP address data-structure can contain either IPv4 or IPv6 addresses
for upwards compatibility of the protocol. The same is true for ports, although
no standard defines 32bit wide port numbers, yet.

• Why does the header contain a PeerID when the BSD socket interface already
provides a look up for this?
The CTL protocol was designed to be independent from the transport used.
While TCP/IP could work without that information in the header, other proto-
cols, like MPI, can not.

• Why do rPointers contain a PeerID?
A rPointer can be passed around to other peers which might want to send a
message to the object, therefore the rPointer needs to know where the object it
points to lives.

6.3 Comparison of distributed object frameworks
In the following sections, the protocols mentioned earlier (2) will be compared to the
CTL in terms of installation, quality and ease of use of APIs, garbage collection for
remote objects, serialization, security and the possibility to use them in environments
with Network Address Translation (NAT) or firewalls.

6.3.1 CTL/C++

The CTL/C++ consists of headers only and therefore needs no installation apart from
copying them to a place were the compiler will find them. It is possible to compile a
static or shared library, too, which only needs to be copied to a fitting place. The CTL4j
can be easily installed from source.
As described earlier, the CTL requires no knowledge about its inner workings from its
users, a component is written just like a normal local class, apart from the CI defini-
tion. Through using a resource manager, programming can be done transparently both
in terms of location of components and the transport mechanism. Remote and local
execution are equal at the source code level. Garbage collection is done by reference
counting at the rPointer level.
Support for new transport protocols can be added by writing additional communicators.
There is no support for changing data serialization by the user.
Using the pipe transport12, which tunnels the communication through a SSH connec-
tion, authentication, confidentiality and integrity is provided. This transport also allows
traversing firewalls and NAT.

12As of now, not supported by CTL4j.
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6.3.2 CORBA

Figure 7: Shows the architecture of CORBA (source: [Groa])

ORBit comes with all major Linux distributions, because it is the base of the Gnome
desktop environment, but it is also available for other Unix systems such as Solaris or
Mac OS X, as well as Windows. The installation size, including dependencies, is about
15MB.
The APIs of CORBA implementations as well as the IDL are designed in a language-
independent manor. They define their own fundamental types and composites, which
means that the user cannot simply write an implementation without knowing about
the communication middleware. Of course, this means that CORBA frameworks can
be implemented for any programming language which results in the widest language
support of all protocols discussed in this paper.

Listing 41: Example: defining an array of int4
typedef sequence<int> int_array;

There is no support for general-purpose garbage collection and reference counting is
not done on remote objects.
Interoperable Object References (IORs) are CORBAs equivalent to Location objects,
as you can see in the example below, they are quite bloated compared to the CTL
protocol:

Lenin:˜/projects/wire/studienarbeit/bench/corba$ ior-decode-2 IOR:010000000c00000049444c3a4164643a312e3000040000000054424f500000000101020005000000554e4958000000000600000070617265380000002c0000002f746d702f6f726269742d6e656f636f6f6c2f6c696e632d323265312d302d393437663437346462623563000000000000000000340000000101020006000000706172653800d6981c0000000000000083dd67edcaa75080d4a9705ec88fd86b01000000719848e800000000caaedfba58000000010102002c0000002f746d702f6f726269742d6e656f636f6f6c2f6c696e632d323265312d302d39343766343734646262356300000000001c0000000000000083dd67edcaa75080d4a9705ec88fd86b01000000719848e801000000480000000100000002000000050000001c0000000000000083dd67edcaa75080d4a9705ec88fd86b01000000719848e801000000140000000100000001000105000000000901010000000000
Object ID: IDL:Add:1.0
IOP_TAG_GENERIC_IOP: GIOP 1.2[UNIX] pare8:/tmp/orbit-neocool/linc-22e1-0-947f474dbb5c

IOP_TAG_INTERNET_IOP: GIOP 1.2 pare8:39126
object_key (28) ’0000000083dd67edcaa75080d4a9705ec88fd86b01000000719848e8’
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IOP_TAG_ORBIT_SPECIFIC: usock /tmp/orbit-neocool/linc-22e1-0-947f474dbb5c IPv6 port 0
object_key (28) ’0000000083dd67edcaa75080d4a9705ec88fd86b01000000719848e8’

IOP_TAG_MULTIPLE_COMPONENTS:
IOP_TAG_COMPLETE_OBJECT_KEY: object_key (28) ’0000000083dd67edcaa75080d4a9705ec88fd86b01000000719848e8’

Unknown component 0x1

The communication between CORBA applications is done via the General Inter-ORB
Protocol (GIOP), which is intended as an implementation for the Presentation and Ses-
sion layers in the OSI network model. For serialization, CORBA uses the Common
Data Representation (CDR), a platform-independent formal mapping of data types, as
seen in the example below.

0x47 0x49 0x4f 0x50 -> GIOP, the key
0x01 0x00 -> GIOP_version
0x00 -> Byte order (big endian)
0x00 -> Message type (Request message)
0x00 0x00 0x00 0x2c -> Message size (44)
0x00 0x00 0x00 0x00 -> Service context
0x00 0x00 0x00 0x01 -> Request ID
0x01 -> Response expected
0x00 0x00 0x00 0x24 -> Object key length in octets (36)
0xab 0xac 0xab 0x31 0x39 0x36 0x31 0x30
0x30 0x35 0x38 0x31 0x36 0x00 0x5f 0x52
0x6f 0x6f 0x74 0x50 0x4f 0x41 0x00 0x00
0xca 0xfe 0xba 0xbe 0x39 0x47 0xc8 0xf8
0x00 0x00 0x00 0x00 -> Object key defined by vendor
0x00 0x00 0x00 0x04 -> Operation name length (4 octets long)
0x61 0x64 0x64 0x00 -> Value of operation name ("add")
0x20 -> Padding bytes to align next value

As you can see, the format is similar to the CTL protocol:

• The key corresponds to the CTL protocol’s ’magic string’.

• Protocol version.

• Specifying the byte order is not necessary in the CTL.

• Message type and Request ID are similar to the message tag.

• Both protocols carry the message size in their headers.

• Whether or not a response is expected is known through the common interface
in the CTL.

• Object keys correspond to Object IDs.

• Operation names correspond to Function IDs.
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The main difference are the ’length’ fields for any user-defined data and the padding
bytes, but basically the message layout of the CTL protocol and the GIOP is quite
similar, although the contents are encoded differently.
The CORBA Security Services (CORBAsec) is a part of the core specification since
2.x and defines security functionality interfaces for ORBs, such as encryption via the
Secure Inter-ORB Protocol (SecIOP). There are some research projects on adding se-
curity to available ORBs, such as [DST].
CORBA 3.x includes a Firewall specification for traversing NAT, but it is not supported
by ORBit as of now.

6.3.3 Microsoft .NET

.NET remoting is included in both the Microsoft implementation as well as the open-
source alternatives, therefore an installation is not required.
Several languages are supported by the Common Language Runtime (CLR), but the
framework itself is only available on the Windows platform. There are two open-source
projects, DotGNU and Mono, which aim to produce a compatible alternative compiler
and VM. During the research for this paper, Mono was used as platform for developing
the examples, because of its better support for remoting.
The API is well integrated into the framework, making it easy to use for developers
which are already used to .NET, in addition to that, there is no special syntax to learn
for defining interfaces. Garbage collection for remote objects is provided by .NET
remoting.
The .NET remoting architecture is based on five core types of objects (descriptions are
taken from [Ram02]):

• Proxies: These objects masquerade as remote objects and forward calls. This is
done by the rPointers in the CTL.

• Messages: Message objects contain the necessary data to execute a remote
method call. Data acquired by Remote.call().

• Message sinks: These objects allow custom processing of messages during a
remote invocation. The functionality is embedded into the CTL at different levels
as it does not support different message formats.

• Formatters: These objects are message sinks as well and will serialize a message
to a transfer format like SOAP. See Message sinks.

• Transport channels: Message sinks yet again, these objects will transfer the seri-
alized message to a remote process, for example, via HTTP. The Communicators
handle different transport protocols in the CTL. The difference between them
and transport channels is, that they can also be used for local message transfer
using threads or shared libraries.

For data serialization, .NET uses the SOAP protocol, which is an XML dialect for
RMI. In contrast to the CTL, remoting supports different formatters for compatibil-
ity with other protocols; for example the Remoting.CORBA project aims to integrate
CORBA/IIOP into .NET by defining new formatters and transport channels (see [Joh]).
However, this flexibility may be a reason for .NET’s weaker performance.
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In .NET, Microsoft supports the deployment of application-defined roles and access
control based on these roles. These mechanisms are extended in ways that are ap-
propriate for the Internet and heterogeneous environments. Encryption is supported
by using HTTPS, in addition to that all other HTTP authentication and authorization
mechanisms are provided.
By using HTTP as transport protocol, .NET remoting can easily be used through fire-
walls and NAT.

6.3.4 Java RMI

Java RMI is part of the Java SDK and therefore no installation is needed.
The API is well integrated into the class framework. Similar to CTL4j, the remote
interface is declared as a normal Java interface. There is no location transparency,
because every host runs its own naming service. Like all other discussed libraries, Java
RMI does not provide an abstraction from local and remote components like the CTL
does.
Communication is only possible between Java applications, no bindings for other pro-
gramming languages are available. As J2EE is not a standard, the conformance varies
across vendors, leading to a possible vendor lock-in.
Garbage collection is done on remote objects using the so called Distributed Garbage
Collector (DGC).
Data is serialized using a proprietary protocol, called Java Object Serialization, created
by Sun. There is no support for using other formatters or transport protocols in Java
RMI.
There is no support for authentication or encryption in Java RMI. A Java Specification
Request (JSR) ([Mic00]) was rejected for this.
For tunneling through firewalls and NAT, Java RMI supports HTTP as transport proto-
col instead of the usual raw TCP/IP sockets based communication.

6.3.5 SOAP

gSOAP2 is easily installed from source. Both C and C++ are supported by it, but
through using the standard SOAP protocol, communication with nearly any other lan-
guage is possible.
The APIs of gSOAP2 are integrated into C’s type system, but need special treatment
for some composite types, such as array, which have to be defined as a struct. However,
the framework is similar to the CTL, because it generates all the communication code
automatically with a special preprocessor. There is no location independence, because
the HTTP server to talk to needs to be defined at source code level.
S̈OAP itself makes no attempt to manage orphaned objects or support remote garbage
collection. In fact, the specification explicitly states that this is not addressed by
SOAP.(̈source: [KS])
The SOAP protocol is an XML dialect, which leads to a big performance loss, because
of the need of parsing the XML document and extracting the data structures from it.
SOAP usually uses HTTP as transport protocol and because of this all usual HTTP
mechanisms for security and authentication are supported, like in .NET. The standard
itself does not mandate the usage of a specific transport protocol, though.
As .NET, SOAP has no problems with firewalls.
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7 Conclusion
The CTL provides an easy-to-use and performant framework for building distributed
applications. It offers a uniform behaviour across different remote protocols and local
linkage. The protocol itself is significantly easier to understand than related works (the
CORBA core specification is ¿1000 pages for example).
In addition to that, during the work for this paper, a new CTL implementation in Java
and methods for using it from Python were developed. This means that it can be used
for communicating in heterogeneous environments were different programming lan-
guages are used.
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A Appendix

A.1 Component interface grammar
Based on [Nie05].

Listing 42: Component interface grammar
<ident> ::= valid C++ identifier
<numargs> ::= Integer # Number of elements
<id> ::= Integer # Unique function ID
<op> ::= overloadable C++ operator

<funcname> ::= <ident> | operator <op>
<type> ::= [const] <ident> [*] | <identifier> "<" <type> ">" |

"(" <ident> "," "(" <type> [ "," <type> ] ")" "," <numargs>
")"

<typelist> ::= "(" ")" [const] "," 0 | "(" <type> [ "," <type>
] ")" [const] "," <numargs>

<funcsign> ::= <type> "," <funcname> "," <typelist>

<constructor> ::= #define CTL_Constructor <id> <typelist>
[ #define CTL_Constructor <id> Throws <typelist> ]

<method> ::= #define CTL_Method <id> <funcsign>
[ #define CTL_Method <id> Throws <typelist> ]

<smethod> ::= #define CTL_StaticMethod <id> <funcsign>
[ #define CTL_StaticMethod <id> Throws <typelist> ]

<function> ::= #define CTL_Function <id> <funcsign>
[ #define CTL_Function <id> Throws <typelist> ]

<functiontmpl> ::= #define CTL_FunctionTmpl <id> <funcsign> <
typelist>

[ #define CTL_FunctionTmpl <id> Throws <typelist> ]

<classentry> ::= <method> | <smethod> | <constructor>
<classbody> ::= #include CTL_ClassBegin
<classentry> [ <classentry> ] #include CTL_ClassEnd
<class> ::= #define CTL_Class <ident> <classbody>
<classtmpl> ::= #define CTL_ClassTmpl <ident> ","
<typelist> <classbody>

<libentry> ::= <class> | <function> | <functiontmpl>
<libbody> ::= #include CTL_LibBegin <libentry>
[ <libentry> ] #include CTL_LibEnd
<library> ::= #define CTL_Library <ident> <librarybody>

<interface> ::= <library> | <class>
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A.2 Obtaining the CTL
• CTL

(...)

• CTL4j
Daily snapshots in both source and binary form are available at
https://shuya.ath.cx/ neocool/code/CTL/. Also available is the daily regen-
erated JavaDoc documentation at https://shuya.ath.cx/ neocool/code/CTL/docs/.

• py2c
The experimental py2c code (without documentation as of now) is available at
https://shuya.ath.cx/ neocool/code/py2c/.

• Resource manager
(...)

• ri-generator
(...)
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A.3 Licensing

Figure 8: CreativeCommons - some rights reserved

This paper is licensed under the CreativeCommons Attribution-Noncommercial-
ShareAlike 2.5 license. Visit http://creativecommons.org/licenses/
by-nc-sa/2.5/ for more information.
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