
Writing Plugins for Referencer

John Spray

September 8, 2008

1 Introduction

The referencer plugin API provides a relatively painless way of adding function-
ality. Plugins can either add user interface entries to menus and toolbars (action
plugins), or provide hooks for downloading metadata for documents (metadata
plugins).

At the time of writing, the plugin interface is new and not widely tested.
Although it is not gratuitously broken there may be issues. Questions to the
mailing list: http://icculus.org/referencer/contact.html.

This document is written for referencer 1.1.2.

1.1 Installing plugins

Plugins are python scripts. They don't have to be executable, but they do have
to have a �lename ending .py. At startup, referencer searches several locations
for plugins: ./plugins, $PREFIX/lib/referencer, and ~/.referencer/plugins.

2 Common API

2.1 Plugin info dictionary

All plugins must contain a dictionary at �le scope capped referencer_plugin_info.
This provides a number of �elds describing the plugin. All plugins must provide
the following �elds, further optional �elds are listed in following sections.

Field Description

author Author's name, or comma separated list. eg. �Bob Dole�
version A version string for the plugin. eg. �1.3.2�
longname The plugin's purpose. eg. �Format author initials�

The plugin info structure might be de�ned like this:

referencer_plugin_info =

{

"author": "John Spray",

"version": "1.1.2",

1

"longname": _("Generate keys from metadata")

}

2.2 Utility functions

Import the module referencer to access the following functions:

referencer.download(short desc, long desc, url) Web download conve-
nience function. Returns a string containing the contents of the down-
loaded �le, or an empty string on errors. Example:
referencer.download(�Downloading tripe�, �Downloading page from

slashdot.org�, �http://www.slashdot.org�)

As well as being convenient, this function inherits the user's gnome-vfs
proxy settings so is in general preferable where more complex http func-
tionality is not required. In any error case, the function returns an empty
string.

referencer._(text) Translation function. You probably want to do �from
referencer import _� in order to support localisation of user-visible
strings. Any user-visible string should be expressed as _(�Some text�)

referencer.pref_get(key) Load a persistent con�guration string. If the key
is not found an empty string is returned. To avoid con�icting with other
plugins, each plugin should use key names pre�xed with the name of the
plugin. These con�guration items are stored in the GConf database along
with referencer's native con�guration.

referencer.pref_set(key , value) Set a persistent con�guration string.

2.3 document class

Referencer exposes individual documents with the document class. This sup-
ports a limited number of getter/setter methods:

get_field(key) Retrieve a (case-insensitive) �eld such as �author�. Builtin
�elds are doi, title, volume, number, journal, author, year and pages.
Other arbitrarily named �elds may or may not exist for a document. Get-
ting a non-existent �eld returns an empty string.

set_field(key, value) Set a �eld.

get_key() Get the key of a document. This is the short id the user would use
to reference a document in a latex paper.

set_key(value) Set the key.

get_filename() Get the URI (eg ��le:///home/me/A%20File.pdf�) of the �le
associated with the document.

2

set_filename(value) Set a document's �le URI to value.

parse_bibtex(value) Parse value as plain-text BibTex and set the docu-
ment's �elds accordingly.

2.4 Con�guration dialog

Plugins can provide a con�guration user interface invoked from the preferences
dialog. The con�guration button in the preferences dialog is enabled if the
plugin includes a function referencer_config().

3 Action plugins

Three things are required to insert actions into the referencer UI: a descrip-
tion of the action, a string describing location of UI elements, and a function
implementing the action.

An action is de�ned as a dictionary with the following �elds:
Field Description

name Internal name for action, pre�xed �_plugin_kittyplugin_stroke�
label Short title-case description eg �Stroke Kitten�
tooltip Long description
icon Filename1 or stock eg. �foo.png�, eg. �_stock:gtk-edit�.

callback Action function
sensitivity* Sensitivity policy function
accelerator* Shortcut key, eg �<control><shift>q�

*: optional
An action de�nition might look like this:

action =

{

"name":"_plugin_genkey_genkey",

"label":_("Generate Key"),

"tooltip":_("Generate keys for the selected documents from their metadata"),

"icon":"_stock:gtk-edit",

"callback":"do_genkey",

"sensitivity":"sensitivity_genkey",

"accelerator":"<control>g"

}

The plugin should also create a list called referencer_plugin_actions con-
taining all actions:

referencer_plugin_actions = [action]

To place the actions in the user interface, the �eld �ui� must be added to the
referencer_plugin_info dictionary. The ui value is a piece of GtkUIMan-
ager XML. This speci�es UI elements as children of existing structures such as

3

menus and toolbars. The parent structure is de�ned as src/referencer_ui.h in
the referencer source code2. Here's an example of creating menu items in the
Document menu and in the toolbar:

<ui>

<menubar name='MenuBar'>

<menu action='DocMenu'>

<placeholder name='PluginDocMenuActions'>

<menuitem action='_plugin_genkey_genkey'/>

</placeholder>

</menu>

</menubar>

<toolbar name='ToolBar'>

<placeholder name='PluginToolBarActions'>

<toolitem action='_plugin_genkey_genkey'/>

</placeholder>

</toolbar>

<popup name='DocPopup'>

<placeholder name='PluginDocPopupActions'>

<menuitem action='_plugin_genkey_genkey'/>

</placeholder>

</popup>

</ui>

The functions referenced as �callback� and �sensitivity� in the action dictionary
both have the prototype myfunction(library, documents) where documents is a
list of referencer.document and library is a unused. For example:

def sensitivity_genkey (library, documents):

pass

def do_genkey (library, documents):

pass

Some plugin actions may wish to display arbitrary UI such as dialogs: this can be
done using PyGtk. A detailed explanation of PyGTK would be outside the scope
of this document: there are many tutorials on writing PyGTK applications.
Note that GTK is already initialised by referencer, so a plugin must not do any
GTK initialisation or �nalisation. For example, the following code would stand
entirely alone:

import gobject

import gtk

dialog = gtk.Dialog (buttons=(

gtk.STOCK_CANCEL, gtk.RESPONSE_REJECT,

2Online at http://hg.icculus.org/jcspray/referencer/file/tip/src/referencer_ui.h

4

gtk.STOCK_OK, gtk.RESPONSE_ACCEPT))

label = gtk.Label ("Hello World")

dialog.vbox.pack_start (label)

dialog.show_all ()

response = dialog.run ()

dialog.hide ()

For an example of an action plugin, have a look at plugins/genkey.py in the
referencer source tree: http://hg.icculus.org/jcspray/referencer/file/

tip/plugins/genkey.py.

4 Metadata plugins

Metadata plugins provide a function to �ll out a document's metadata �elds
based on a document identi�er.

To describe which identi�er formats are supported, the plugin should create
a list of strings called referencer_plugin_capabilities. At time of writing,
the possible capabilities are �doi�, �pubmed� and �arxiv�.

To do the lookup, a function resolve_metadata(doc , method) should be
created. doc is the referencer.document whose �elds should be �lled out, and
method is one of the capability strings listed in referencer_plugin_capabilities.

For an example of a metadata plugin, have a look at plugins/pubmed.py
in the referencer source code: http://hg.icculus.org/jcspray/referencer/
file/tip/plugins/pubmed.py.

5

